Version 07-06-2000
(Updated: January, 1997; July, 1998; May, 1999; March 2000, July 2000)
Introduction
This land cover data set was produced as part of a cooperative project
between the U.S. Geological Survey (USGS) and the U.S. Environmental
Protection Agency (USEPA) to produce a consistent, land cover data layer
for the conterminous U.S. based on 30-meter Landsat thematic mapper (TM)
data. National Land Cover Data (NLCD) was developed from TM data
acquired by the Multi-resoultion Land Characterization (MRLC) Consortium.
The MRLC Consortium is a partnership of federal agencies that produce or
use land cover data. Partners include the USGS (National Mapping,
Biological Resources, and Water Resources Divisions), USEPA, the U.S.
Forest Service, and the National Oceanic and Atmospheric Administration.
New York
The New York NLCD set was produced as part of a project area
encompassing portions of Federal Region II, including the states of New
Jersey and New York. This data set was produced under the direction of
the MRLC Regional Land Cover Characterization Project of the USGS
EROS Data Center (EDC), Sioux Falls, SD. Questions about the data set can
be directed to the MRLC Regional Team at (605) 594-6114 or
mrlc@edcmail.cr.usgs.gov.
Version/Revisions:
Projection Information:
The initial Landsat TM mosaics, all ancillary data sets, and the land cover
product are all map-registered to an Albers Conical Equal Area projection.
The following represents projection information for the final land cover
product for the state of New York.
Number of Lines (rows): 17455
Number of Samples (columns): 23005
Number of Bands: 1 Pixel size: 30 X 30 meters
Projection Coordinates (center of pixel, projection meters)
NOTE: Each state data set was extracted from the larger regional data set. State boundaries from the USGS 1:100,000 Digital Line Graph (DLG) series were used as the basis for extracting the state data. In many instances, the precision of the boundaries in the 1:100,000 DLG data does not match the spatial precision of the Landsat TM data. This is most apparent where state boundaries follow small rivers. To overcome the possibility of data being lost in the extraction process, a 300 meter (10 pixel) buffer was added to the state boundary used to extract the state data.
Data Sources:
The base data set for this project was leaves-off/on Landsat TM data,
nominal-1992 acquisitions. Other ancillary data layers included leaves-on/off
TM, USGS 3-arc second Digital Terrain Elevation Data (DTED) and derived
slope, aspect and shaded relief, Bureau of the Census population and housing
density data, USGS land use and land cover (LUDA), and National Wetlands
Inventory (NWI) data if available. Other additonal data sets included:
STATSGO soils information, a New York State Regulatory Wetlands
information.
Landsat thematic mapper (TM) scenes:
Path | Row | Date |
013 | 031 | 02-May-93 |
013 | 032 | 13-Apr-92 |
014 | 029 | 09-May-93 |
014 | 030 | 09-May-93 |
014 | 031 | 28-Apr-89 |
014 | 032 | 17-Mar-91 |
015 | 029 | 14-Jun-92 |
015 | 030 | 18-Oct-91 |
015 | 031 | 31-Mar-88 |
016 | 030 | 26-Mar-89 |
016 | 031 | 31-Mar-91 |
017 | 030 | 17-Nov-91 |
017 | 031 | 29-Mar-88 |
LEAF ON: | ||
013 | 031 | 06-Oct-92 |
013 | 032 | 20-Sep-92 |
014 | 029 | 29-Aug-93 |
014 | 030 | 09-Sep-91 |
014 | 031 | 21-Jun-91 |
014 | 032 | 20-May-91 |
015 | 029 | 11-May-91 |
015 | 030 | 29-May-92 |
015 | 031 | 14-Jun-92 |
016 | 030 | 20-May-92 |
016 | 031 | 20-May-92 |
017 | 030 | 30-May-93 |
017 | 031 | 30-May-93 |
Caveats and Concerns:
While we believe that the approach taken has yielded a very good general
land cover classification product for a very large region, it is important to
indicate to the user where there might be some potential problems. The
biggest concerns are listed below:
Accuracy Assessment:
In Region II, consisting of New Jersey and New York, the accuracy
assessment was completed for 15 land cover and land use classes, using
interpreted 1:40,000-scale aerial photographs as reference data. The
methodology used for Region II features a two-stage, geographically stratified
approach, with a general sample of all classes (1,033 sample sites), and a
separate sample for rare classes (294 sample sites). A confidence index was
recorded for each land cover interpretation on the 1:40,000 aerial
photography. The estimated overall accuracy for Region II was 63 percent
(standard error 1.4 percent) using all sample sites, and 75.2 percent (standard
error 1.5 percent) using only reference sites with a high-confidence index.
User's and producer's accuracies (Congalton, 1991) for the general sample
and user's accuracy for the sample of rare classes, as well as variance for the
accuracy parameters, were also reported. Narrowly defined land use classes
and heterogeneous conditions of land cover are the major causes of
misclassification errors.
The complete accuracy assessment for Region II may be obtained by contacting the MRLC Regional Team at (605) 594-6114 or mrlc@edcmail.cr.usgs.gov.
23-Class National Land Cover Data Key - Rev. July 20, 1999:
NOTE - All Classes May NOT Be Represented in a specific state data set.
The class number represents the digital value of the class in the data set.
NLCD Land Cover Classification System Land Cover Class Definitions
Water - All areas of open water or permanent ice/snow cover.
11. Open Water - All areas of open water; typically 25 percent or greater
cover of water (per pixel).
12. Perennial Ice/Snow - All areas characterized by year-long cover of ice
and/or snow.
Developed - Areas characterized by a high percentage (30 percent or greater)
of constructed materials (e.g. asphalt, concrete, buildings, etc).
21. Low Intensity Residential - Includes areas with a mixture of constructed
materials and vegetation. Constructed materials account for 30-80 percent of
the cover. Vegetation may account for 20 to 70 percent of the cover. These
areas most commonly include single-family housing units. Population
densities will be lower than in high intensity residential areas.
22. High Intensity Residential - Includes highly developed areas where
people reside in high numbers. Examples include apartment complexes and
row houses. Vegetation accounts for less than 20 percent of the cover.
Constructed materials account for 80 to100 percent of the cover.
23. Commercial/Industrial/Transportation - Includes infrastructure (e.g.
roads, railroads, etc.) and all highly developed areas not classified as High
Intensity Residential.
Barren - Areas characterized by bare rock, gravel, sand, silt, clay, or other
earthen material, with little or no "green" vegetation present regardless of its
inherent ability to support life. Vegetation, if present, is more widely spaced
and scrubby than that in the "green" vegetated categories; lichen cover may be
extensive.
31. Bare Rock/Sand/Clay - Prennially barren areas of bedrock, desert
pavement, scarps, talus, slides, volcanic material, glacial debris, beaches, and
other accumulations of earthen material.
32. Quarries/Strip Mines/Gravel Pits - Areas of extractive mining activities
with significant surface expression.
33. Transitional - Areas of sparse vegetative cover (less than 25 percent of
cover) that are dynamically changing from one land cover to another, often
because of land use activities. Examples include forest clearcuts, a transition
phase between forest and agricultural land, the temporary clearing of
vegetation, and changes due to natural causes (e.g. fire, flood, etc.).
Forested Upland - Areas characterized by tree cover (natural or semi-natural
woody vegetation, generally greater than 6 meters tall); tree canopy accounts
for 25-100 percent of the cover.
41. Deciduous Forest - Areas dominated by trees where 75 percent or more
of the tree species shed foliage simultaneously in response to seasonal
change.
42. Evergreen Forest - Areas dominated by trees where 75 percent or more of
the tree species maintain their leaves all year. Canopy is never without green
foliage.
43. Mixed Forest - Areas dominated by trees where neither deciduous nor
evergreen species represent more than 75 percent of the cover present.
Shrubland - Areas characterized by natural or semi-natural woody vegetation
with aerial stems, generally less than 6 meters tall, with individuals or
clumps not touching to interlocking. Both evergreen and deciduous species
of true shrubs, young trees, and trees or shrubs that are small or stunted
because of environmental conditions are included.
51. Shrubland - Areas dominated by shrubs; shrub canopy accounts for
25-100 percent of the cover. Shrub cover is generally greater than 25 percent
when tree cover is less than 25 percent. Shrub cover may be less than 25
percent in cases when the cover of other life forms (e.g. herbaceous or tree) is
less than 25 percent and shrubs cover exceeds the cover of the other life
forms.
Non-natural Woody - Areas dominated by non-natural woody vegetation;
non-natural woody vegetative canopy accounts for 25-100 percent of the
cover. The non-natural woody classification is subject to the availability of
sufficient ancillary data to differentiate non-natural woody vegetation from
natural woody vegetation.
61. Orchards/Vineyards/Other - Orchards, vineyards, and other areas planted
or maintained for the production of fruits, nuts, berries, or ornamentals.
Herbaceous Upland - Upland areas characterized by natural or semi-natural
herbaceous vegetation; herbaceous vegetation accounts for 75-100 percent of
the cover.
71. Grasslands/Herbaceous - Areas dominated by upland grasses and forbs.
In rare cases, herbaceous cover is less than 25 percent, but exceeds the
combined cover of the woody species present. These areas are not subject to
intensive management, but they are often utilized for grazing.
Planted/Cultivated - Areas characterized by herbaceous vegetation that
has been planted or is intensively managed for the production of food, feed,
or fiber; or is maintained in developed settings for specific purposes.
Herbaceous vegetation accounts for 75-100 percent of the cover.
81. Pasture/Hay - Areas of grasses, legumes, or grass-legume mixtures
planted for livestock grazing or the production of seed or hay crops.
82. Row Crops - Areas used for the production of crops, such as corn,
soybeans, vegetables, tobacco, and cotton.
83. Small Grains - Areas used for the production of graminoid crops such as
wheat, barley, oats, and rice.
84. Fallow - Areas used for the production of crops that are temporarily
barren or with sparse vegetative cover as a result of being tilled in a
management practice that incorporates prescribed alternation between
cropping and tillage.
85. Urban/Recreational Grasses - Vegetation (primarily grasses) planted in
developed settings for recreation, erosion control, or aesthetic purposes.
Examples include parks, lawns, golf courses, airport grasses, and industrial
site grasses.
Wetlands - Areas where the soil or substrate is periodically saturated with or
covered with water as defined by Cowardin et al.
91. Woody Wetlands - Areas where forest or shrubland vegetation accounts
for 25-100 percent of the cover and the soil or substrate is periodically
saturated with or covered with water.
92. Emergent Herbaceous Wetlands - Areas where perennial herbaceous
vegetation accounts for 75-100 percent of the cover and the soil or substrate
is periodically saturated with or covered with water.
General Procedures
Land Cover Characterization:
The project is being carried out on the basis of 10 Federal Regions that make
up the conterminous United States; each region is comprized of multiple
states; each region is processed in subregional units that are limited to the
area covered by no more than 18 Landsat TM scenes. The general NLCD
procedure is to: (1) mosaic subregional TM scenes and classify them using an
unsupervised clustering algorithm, (2) interpret and label the clusters/classes
using aerial photographs as reference data, (3) resolve the labeling of
confused clusters/classes using the appropriate ancillary data source(s), and
(4) incorporate land cover information from other data sets and perform
manual edits to augment and refine the "basic" classification developed
above.
Two seasonally distinct TM mosaics are produced, a leaves-on version (summer) and a leaves-off (spring/fall) version. TM bands 3 4 5 and 7 are mosaicked for both the leaves-on and leaves-off versions. For mosaicking purposes, a base scene is selected for each mosaic and the other scenes are adjusted to mimic spectral properties of the base scene using histogram matching in regions of spatial overlap.
Following mosaicking, either the leaves-off version or leaves-on version is selected to be the "base" for the land cover mapping process. The 4 TM bands of the "base" mosaic are clustered to produce a single 100-class image using an unspervised clustering algorithm. Each of the spectrally distinct clusters/classes is then assigned to one or more Anderson level 1 and 2 land cover classes using National High Altitude Photography program (NHAP) and National Aeria l Photography program (NAPP) aerial photographs as a reference. Almost invariably, individual spectral clusters/classes are confused between two or more land cover classes.
Separation of the confused spectral clusters/classes into appropriate NLCD class is accomplished using ancillary data layers. Standard ancillary data layers include: the "non-base" mosaic TM bands and 100-class cluster image; derived TM normalized vegetation index (NDVI), various TM band ratios, TM date bands; 3-arc second Digital Terrain Elevation Data (DTED) and derived slope, aspect and shaded relief; population and housing density data; USGS land use and land cover (LUDA); and National Wetlands Inventory (NWI) data if available. Other ancillary data sources may include soils data, unique state or regional land cover data sets, or data from other federal programs such as the National Gap Analysis Program (GAP) of the USGS Biological Resources Division (BRD). For a given confused spectral cluster/class, digital values of the various ancillary data layers are compared to determine: (1) which data layers are the most effective for splitting the confused cluster/class into the appropriate NLCD class, and (2) the appropriate layer thresholds for making the split(s). Models are then developed using one to several ancillary data layers to split the confused cluster/class into the NLCD class. For example, a population density threshold is used to separate high-intensity residential areas from commercial/industrial/transportation. Or a cluster/class might be confused between row crop and grasslands. To split this particular cluster/class, a TM NDVI threshold might be identified and used with an elevation threshold in a class-spliting model to make the appropriate NLCD class assignments. A purely spectral example is using the temporally opposite TM layers to discriminate confused cluster/classes such as hay pasture vs. row crops and deciduous forests vs. evergreen forests; simple thresholds that contrast the seasonal differences in vegetation between leaves-on vs. leaves-off.
Not all cluster/class confusion can be successfully modeled out. Certain classes such as urban/recreational grasses or quarries/strip mines/gravel pits that are not spectrally unique require manual editing. These class features are typically visually identified and then reclassified using on-screen digitizing and recoding. Other classes such as wetlands require the use of specific data sets such as NWI to provide the most accurate classification. Areas lacking NWI data are typically subset out and modeling is used to estimate wetlands in these localized areas. The final NLCD product results from the classification (interpretation and labeling) of the 100-class "base"cluster mosaic using both automated and manual processes, incorporating both spectral and conditional data layers. For a more detailed explanation please see Vogelmann et al. 1998 and Vogelmann et al. 1998.
Accuracy Assessment:
An accuracy assessment is done on all NLCD on a Federal Region basis
following a revision cycle that incorporates feedback from MRLC
Consortium partners and affiliated users. The accuracy assessments are
conducted by private sector vendors under contract to the USEPA. A
protocol has been established by the USGS and USEPA that incorporates a
two-stage, geographically stratified cluster sampling plan (Zhu et al., 1999)
utilizing National Aerial Photography Program (NAPP) photographs as the
sampling frame and the basic sampling unit. In this design a NAPP
photograph is defined as a 1st stage or primary sampling unit (PSU), and a
sampled pixel within each PSU is treated as a 2nd stage or secondary
sampling unit (SSU).
PSU's are selected from a sampling grid based on NAPP flight-lines and photo centers, each grid cell measures 15' X 15' (minutes of latitude/longitude) and consists of 32 NHAP photographs. A geographically stratified random sampling is performed with 1 NAPP photo being randomly selected from each cell (geographic strata), if a sampled photo falls outside of the regional boundary it is not used. Second stage sampling is accomplished by selecting SSU's (pixels) within each PSU (NAPP photo) to provide the actual locations for the reference land cover classification.
The SSU's are manually interpreted and misclassification errors are estimated and described using a traditional error matrix as well as a number of other important measures including the overall proportion of pixels correctly classified, user's and producer's accuracies, and omission and commission error probabilities.
Discussion:
While we believe that the approach taken has yielded a very good general
land cover classification product for a large region, it is important to indicate
to the user where there might be some potential problems. The biggest
concerns are listed below:
Acknowledgments
This work was performed by the Raytheon STX Corporation under U.S.
Geological Survey Contract 1434-CR-97-CN-40274.
References
More detailed information on the methodologies and techniques employed in this work can be found in the following:
Kelly, P.M., and White, J.M., 1993. Preprocessing remotely sensed data for efficient analysis and classification, Applications of Artificial Intelligence 1993: Knowledge-Based Systems in Aerospace and Industry, Proceeding of SPIE, 1993, 24-30.
Congalton, R.G., 1991. A review of assessing true accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37:35-46.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe, 1979. Classification of Wetlands and Deepwater Habitats of the United States, Fish and Wildlife Service, U.S. Department of the Interior, Washington, D.C.
Vogelmann, J.E., Sohl, T., and Howard, S.M., 1998. "Regional Characterization of Land Cover Using Multiple Sources of Data." Photogrammetric Engineering & Remote Sensing, Vol. 64, No. 1, pp. 45-47.
Vogelmann, J.E., Sohl, T., Campbell, P.V., and Shaw, D.M., 1998. "Regional Land Cover Characterization Using Landsat Thematic Mapper Data and Ancillary Data Sources." Environmental Monitoring and Assessment, Vol. 51, pp. 415-428.
Zhu, Z., Yang, L., Stehman, S., and Czaplewski, R., 1999. "Designing an Accuracy Assessment for USGS Regional Land Cover Mapping Program." (In review) Photogrametric Engineering & Remote Sensing.